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COMMENT 

On the phase transitions in superconductors with quenched 
impurities 

D I Uzunov, E R Korutcheva and Y T Millev 
Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 11 84-Sofia, 
Bulgaria 

Received 2 August 1983 

Abstract. The question whether the Halperin-Lubensky-Ma result for a fluctuation- 
induced weakly first-order phase transition in superconductors holds in the presence of 
quenched impurities is considered. The renormalisation-group recursion relations have a 
new stable fixed point for 1 < n c 366, which describes a real critical behaviour in the range 
2 < D,(n) < d < 4 of space dimensionalities d ( n / 2  is the number of components of the 
complex order parameter). Some features of the new fixed point are discussed. The critical 
exponents are presented for 1 < n C 366. 

The possibility of a weakly first-order phase transition (FOT) was demonstrated for 
the first time on the basis of the Ginzburg-Landau (GL) model of superconductors 
(Halperin et a1 1974). A comprehensive discussion of this fluctuation induced effect 
is presented by Chen et a1 (1978). The effect has been established for the model 
describing the nematic-smetic-A transition in liquid crystals (Halperin and Lubensky 
1974, Lubensky and Chen 1978), abelian Higgs models (Lawrie 1982a), and models 
with two order parameters (Tonchev and Uzunov 1981a, b). It is a consequence of 
the interaction between the fluctuation order parameter and a gauge field, such as the 
vector potential A ( x )  in the GL free energy. If the gauge field is neglected, the phase 
transition is of second order. Besides, the studies in this field are essentially used when 
a successful gauge theory of spin glasses is looked for (Hertz 1978). 

Recently, a three-dimensional lattice superconductor model was studied by means 
of Monte Carlo simulations (Dasgupta and Halperin 1981). The FOT was not found. 
Besides, Lawrie (1982b) has demonstrated that ‘there is a value of the electric charge 
e above which the argument for the FOT fails’. These new results, supported by 
experiments in liquid crystals, make vulnerable the statement that the fluctuation- 
induced FOT takes place for any value of the parameters of the theory, Experiments 
in ordinary superconductors cannot help for the solution of the problem as the size 
of the FOT was found to be experimentally undetectable (Halperin et a1 1974) with 
the experimental techniques available at present. There is, in principle, a possibility 
for the FOT to be observed in complicated superconductors with bicritical and tetra- 
critical points, where a great enlargement of the critical region has been predicted 
(Hornreich and Schuster 1979, Tonchev and Uzunov 1981a, b). This may turn out 
to be a real way for an experimental investigation of the FOT in superconductors. 

On the other hand, when trying to plot experiments against theory, one has to 
remember that in real systems inhomogeneities of several types always exist, some of 
them being relevant to the scaling properties (Lubensky 1975, Ma 1976). Viewing 
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the problems in pure gauge-invariant systems, it is interesting to understand the way 
in which the inhomogeneities modify the theoretical predictions for a FOT. Contrary 
to the effect of the vector potential A(x),  the quenched impurities act to smear the 
transition. The renormalisation-group (RG) treatment by means of the Callan- 
Symanzik equations reveals a spectacular competition between the effect of the vector 
potential and the quenched-impurity influence (Boyanovsky and Cardy 1982). 

In the present paper we investigate the same influence on the phase transition in 
a superconducting state, using the Wilson-Fisher method of the finite recursion relations 
(see Ma 1976). Our results are complementary to those of Boyanovsky and Cardy 
(1982). 

The GL model %'= ( - H /  kBT) in the presence of quenched impurities is given by 

%=- dx [~~~~'+y((V-iq~A)~~~+~B~cL~~+(8.rrp)-'(rot A)'], (1) 

where qO= (2e/hc), div A(x)  = O  and 4(x) is generalised to an (n/2)-component 
complex order parameter. The parameters y = h2/2m, b, and a = a'(  T -  T,) T,+ q ( x )  
are spatially dependent. However, for calculations to order E ' ,  E = 4- d ( d  is the 
dimensionality of space), the only one relevant to the RG analysis spatial dependence 
is that represented by the random function q ( x )  with a gaussian distribution 

I 

(q(k)q(k')) = A( k ) 6 - k , k J  (2) 

where A(k)  is a non-negative function of the momentum k, 0 < k < A( k = lkl). We 
examine the momentum-independent (A(  k )  = A )  large-distance behaviour of the 
impurity correlation function ( Jq (  k)I2) since the more general even-power k-depen- 
dence (Larkin and Ovchinnikov 1971) also turns out to be irrelevant to the scaling 
analysis despite of the presence of the vector potential A ( x )  in the model (1). We 
shall apply the well known technique (Lubensky 1975, Ma 1976) for studying the 
impurity effects without the use of the replica trick (Edwards and Anderson 1975). 
We choose units in which A = KB = T, = 1. 

The recursion relations to order E '  are 

B'=  sEw2"*  { B + ( B / 8 . r r 2 y 2 ) [ 6 A - $ ( n + 8 ) B ]  In s-12yZ(q~p) '1n s}, 

A'=s"-2'*{A+(A/8.rr'y2)[4A-(n+2)B]ln s}, (3c) 

y' = s-% Y [ l  -(3/2.rr)(q&) In SI, 

( 1 / p ' )  = S- 'A~- ' [ I  +(n/12.rr)(q&) In s], 
& = S ( E - 1 A ) / 2  

(3b) 

( 3 4  

( 3 e )  

40 1 ( 3f) 
where s > 1 is the RG rescaling factor, r),  and rlA are the anomalous dimensionalities 
(Fisher's exponents) of the fields CC, and A, respectively. The recursions ( 3 )  are a direct 
generalisation of those for pure ( A = O )  superconductors (Halperin ef al 1974), and 
for the q4 theory accounting for quenched impurities (Lubensky 1975). This fact 
is a consequence of the gauge properties of the vector potential and is valid for other 
gauge models as well. 

A gaussian (unstable for E > 0) fixed point (FP) of the relations (3) always exists. 
Searching for stable FPS, we find the same values rlA = E and rl, = - 1 8 ~ / n  as in the 
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pure case. Introducingnew parameters t = q i p ,  r = a /  y, U = b / 8 r 2  y2  and 5 = A/27r2 y2,  
we obtain for n > 1 FPS with coordinates 

U T  = [( n + 36)/4n( IZ - 1)][ 1 * f l ~ ,  

5T = [ ( n  + 36)/4n(n - 1)][3(2- n )  * ( n  + 2 ) f l ~ ,  

(4c) 

( 4 4  

where 

f(  n )  = [ 1 + 3456( n - 1 )/ ( n + 36)’] ’”. 
Only the FP with rT, U T  and 5: has to be considered as a physical FP (Lubensky 1975), 
because 5: is negative for any n > 1, whereas 5: > 0 in the range 1 < n S 366 = n, ( n  
integer). The critical value n, = 366 can be obtained from (4) after a simple computer 
calculation. Hence, the presence of the parameter A 5 0 leads to the emergence of a 
new FP for a range of values of n where no real FPS were ‘available’ in the pure 
superconductor (Halperin et af 1974). In the last case, the equation for U T  has complex 
solutions for n < 365.9. The FP (4), its interesting properties, as well as the critical 
exponents for n = 2, have already been obtained by Boyanovsky and Cardy (1982). 

The critical exponents in the range 1 < n C 366 are 

v =;- (~ /4n ){18+[ (n  +36)/16(n - 1)][2-5n - ( n  +2)fl}, ( 5 )  

~ + = X ( E ,  n ) * i Y ( ~ ,  n ) ,  (6) 
with 

n+36  
16n( n - 1) 

[22-25n + 3(n - 2)fl, X( E ,  n )  = ( 1 + ?) E + 

n+36  
16n(n-  1) Y(E, n )  = ~ { 2 4 ( n  + 2)( 1 +f)[6- 3n + ( n  + 2)fl-[18 - 3n + (n  + 14)f12}’’2 

(7b) 
where y+, -  = and the exponents yn r = ( t ,  r, U, 5); are defined by the relation 
87’ = sy& As X(E,  n )  is negative for E > 0 the FP is stable with respect to U- and 
5-perturbations. The imaginary part Y (  E, n )  # 0 leads to spiral RG trajectories to the 
FP which has accordingly been distinguished as a focus of the RG transformation. The 
critical behaviour corresponding to the focal FP will have a physical sense if the critical 
exponents U, 6 and /3 are positive. For v this is seen from equation(5). Using a well 
known scaling relation (Ma 1976), one can check that 6 > 0 too. The exponent p is 
a given by the relation 

/3 = $v( d - 2 + v+). 

d > D,( n ) = 2 ( n + 3 6) / ( n + 1 8), 

Using v > 0, qJ = - 1 8 ~ / n  and the requirement /3 > 0, we obtain the condition 

(9) 
which is a restriction for the dimensionality of space. If d D,(n) the new critical 
behaviour should not be considered as real. In this case, using the non-RG arguments 
for a FOT in pure superconductors (Halperin et a1 1974), we may conclude that the 
FOT manifests itself again despite the presence of quenched impurities. For n = 2 (the 
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case of a superconductor), D J 2 )  = 3.8. A conclusion for a FOT can be verified, if one 
repeats the self-consistent calculations of Halperin et a1 (1974) with regard to the 
present case. This alternative is the most appealing one for three-dimensional systems. 
It must be stressed that the above-mentioned self-consistent calculation is, in fact, 
insensitive to the impurities. Thus, a new unconventional self-consistent method is 
needed for the resolute verification of the FOT in impure systems. 

The next remark concerns the e’ corrections. We have not a fair chance of success 
if we try to analyse the recursion relations in O ( E * ) .  The recursion relations of order 
E’ are not analytically tractable when the impurities are included, even within the 
framework of the standard cp4-theory. The situation is the same with the analytic 
study of the pure superconductor. Besides, there are no physical arguments that there 
will be a qualitative disagreement with the present calculation. 

From (5)-(7) one can check that the well known relation 

2 v - ’ - d = y t  (10) 

does not hold here. The reason is that, owing to the vector potential A ( x ) ,  the model 
(1) does not possess spherical symmetry. If we reformulate the RG transformation, 
introducing a rescaling for the random function via the relation cp(sk’) = sY*cp(k) and 
go through the derivation of the relation (10) (Ma 1976), we get 

2 y ,  - d = y,. (11) 

The new relation ( l l ) ,  which holds for any system, gives us information about the 
scaling properties of the function cp(k). 

Now we end with a discussion on a property of the focal FP (4). Although the 
irrelevant exponents yu  and y ,  are complex, i t  will be wrong to conclude that the free 
energy F of the system is a non-analytic function of the variations SU = U - U T  and 
S l =  5 - l :  near the FP. If the free energy is a non-analytic function, it will have (at 
least) poles in the variables Su’ = s) ’~ ,  Su and 85’ = s ’ 6 5  (see Wegner 1976). Then, 
choosing s = 5 = ( T -  TJ-”, we find that the parameters u and 5 act as relevant ones. 
In fact, the free energy can be explicitly calculated as a function of the renormalised 
parameters, and in this way a realisation of Wegner’s expansion in the powers of ST 
is to be obtained (Wegner 1976). On the other hand, F ( T )  must be a real function 
of Su and Si.  With the last condition in mind, a new property of the local FP can be 
derived. It is also valid for other models with complex exponents (Uzunov 1983). 
The result from the calculation of F (  T )  to O( 7’) is 

with 
F ( T )  = Fo( T * )  + F ,  ( S r ,  S t )  + F2( Su, S i )  + O( E ,  ST) 

F2 = 4 7r2ny2[2(  n + 2 )  Su ’ - S i ’  - S g ’ ] J 2 (  O), 
where 

O < k < l .  

Using the linearised transformations Su’ = s’4u and S i ’  = s y 6 1  as well as yU, ,  from 
(6)-(7), the condition that F2 must be a real function of Su and S i  yields 

2( n +2)Su + 85 = o +  O(& ST) (12) 
which is a restriction on the possible variations of Su and S i  around the focal FP. Also, 
equation (12) shows that the RG trajectories to the FP have one and the same tangent. 
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